bn is the depth of descent at n-th step along discrepancy gradient;
wy, wB, wp are the residual terms of equations for finite increments;

t, T are the time;
™m is the right-hand value of complete time interval;
q is the heat flux.
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SOLUTION OF INVERSE COEFFICIENT PROBLEMS
BY THE REGULARIZATION METHOD USING
SPLINE FUNCTIONS

A. M, Makarov and M. R. Romanovskii UDC 536.2:517.9

The problem of determining the unknown coeffxcxent in an equation of conservation of matter is
discussed.

In a region Q={(x, t): (0, 1) X (0, 1)} let the equation of conservation of matter be assigned in the form

Lu=Lu—alPu—2 1Dy, 5 (x HeQ,

T du 6]
u(x, 0)=9(x), Du=q,(), Du=q,t) (x, HeNX,

where u(x, t) is the process under consideration; a(u) is an unknown coefficient; f(x, t) is a function of internal

sources; ¢(x), ¢i(t), and ¢,(t) are functions describing the initial and boundary conditions of the problem; 14,

LW, and L ?) are differential operators expressing one or another conservation law; Dy and D, are boundary-

condition operators; 8Q is the boundary of the region.

Within the framework of models with the simultaneous estimation of parameters the following formula-
tions are known: first, when the coefficient is sought from an additional condition to the problem (1) 1, 2],
and second, when it is sought from known d-approximations to u and {, i.e., from elements i and { such that
pyfu, 8) = &; and py(f, f) = 6, [3]. The second formulation, although connected with a greater volume of mea~
surements, still allows one to construct models of processes which are closer to the actual processes. We
will have this formulation in mind below.

Following [4], we introduce the regularizing functional

@, ldl = ijj (Lu — f dedt + aQp%h @)

where « is the regularization parameter; Q(:;)q is a stabilizer of the form
*

if [pa—amp (

\du? du’
Q(k) — Q
" Fa e\, [(Fa a2
|S‘§ p ga _ . +q(_____-———)]dxdt, k=2,
L s " o \ 0t ot?

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 34, No. 2, pp. 332-337, February, 1978, Original
article submitted April 5, 1977,

d’a d'a*

)2] dxdi, k=1,
(3)

where a* is the trial element.
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The stabilizers introduced include the cases considered in [4-6] and impose the corresponding limitations
on the region of allowable solutions, and consequently they must assure the regularity of the algorithm for the
solution, The classes of stabilizers under consideration (k =1, 2), however, differ in the efficiency of con-
struction of the solution: for stabilizers of the second class (k =2) there is regularization of both the functions
a(u) and u(x, t), as a consequence of which one can expect that they possess better properties.

For the functional (2) let us examine the problem of seeking the coefficient ay for which
inf @ la] = @, [a,]- (4)
Since inverse problems are solved under conditions of limited information, as a rule, the unknown dependence
must be chosen so'tha’c it proves to be less connected with a priori information, has sufficient smoothness, and

assures good approximation, The enumerated requirements are filled by splines, the final form of which is
determined by the desired properties of the stabilizer. In the present work we chose cubic splines [7]

at () = A0S A S a0 S A P, wElu Ly wil (5)
where
NG (w—uw?2u—u_)+hl S (y—upP (u—u_y) |
1 = i 3 s 2 - 9 3
hl hl
S — (u—uy_PRw—u+h] Sf,” — (w—uy_ P (u—uy) .
i 1 ' 12

hlzul"—‘ul_l; l':l’ Nv

N is the lattice parameter and R = {ul}l=m; {Kﬁ)z} are coefficients, The investigation of the properties of the
stabilizers up to second order inclusively (p, q = 0, 1, 2) is provided for in this case,

. A
Reducing the functional (2) to a function of the variables {?»f ,;}, we write the necessary condition for the
the minimum of this function in the form of a system of linear algebraic equations

A\ =b, 6
where

Vi, i=1,2 i=i 4

VIR v =201, 2 i=1 3, -5
@y =ap=\Vi), P=2—1, 2L, j= 241, 2t2, (=T W

vy, i—ON L1, ON+2, j=i, ON-+%

o i=21—1,2, j=21F3, 2N +2, I=T,N—F;
| w i=1,2
b= Wi+ Wl =328,
W i=9N +1, 2N +2;
VP = ([ [P b+ Gy B+

QUm
4 Gy a1y G —2(m—)) | dEdT;
Wi — Y S {(Ltv—f) Fi ey + = 1 aimy Yy + Gé’?zﬁgm-nqu},dgdr;
‘Qm

Q= {E V) Uy <VE T <ULN
, dsi” ;.
F{? = SO LN o - Lo
0, k=1, p=0,1,2

Héf’::{ " si” a_”>”+d_55_”@fv. B2, p=0, 1,2
Pl | & 5 @ | ,p=0, 1, 2




7 Q(r)
dSt k=1, q:Oy 192;

o — dv
9t 7S [ v T, dsi” 9% .
[ o (3?) ta “a?i]y k=2, ¢=0,1, 2
0, k=1, p=0,1,2
Y,=1 &a*
k=2, p=0,12
p P p
da*
——dUTv k"'l’ q=0’ 1’ 2’
Z,=
'aqa* .
q aTq , k_2, q;: 0, 1, 2

The solution of the system (6) determines the coefficients of the spline (5) for a given @. The best regulariza-
tion parameter can be determined from the discrepancy principle:

where uy is the solution of the direct problem (1) with the given a3 é, is the error in the algorithm for the solu-
tion of the inverse and direct problems, The practical calculation of 84 is difficult, but if one can guarantee

an estimate 84 < §; (in accordance with the functional scheme for the model and the process, for example, and

in the presence of stability of the algorithm for the solution), then Eq. (7) closes the solution of the stated prob-
lem of identification,

The principle of the quasioptimum parameter, consisting in the solution of the problem
inf j y (8o — U\ dxdt = H (U, — U, P dxclt, -
* °q g

where p ~ 1 is a parameter of the iteration process, evidently leads to another means of determination of the
best & = ax, Closure with respect to the algorithm (8) does not require knowledge of the statistical charac-
teristics of the process under study, which offers undoubted advantages.

Let us consider a model problem: For the function

a(x, t)=t+x*(1 + ) ®
and the model
du u . .
a = a(u) Ew (x, HEQ, Dx(O, 1)
(10
u(x, 0) = x2,

u(©, ty=t, u(l, t)=1-1¢
of the process one is required to determine the dependence a(u).

Since the exact solution (¢ = 0, @ = 0.5) is known in the problem under consideration, the efficiency in
the use of the stabilizers (3) which were introduced can be estimated in the following way: As the best value of
the parameter @ = a4 for each stabilizer &Z(g)q we take that which is the solution of the problem

igf y 5‘ (ag — a)? dxdt = j j (@, —ap ddt = o} . 11
Q Q

The given algorithm allows one to examine the properties of the stabilizers from the point of view of estimat-
ing the mean-square error of the solution of the inverse problem. The operator mean-square error

o2 = qu (Lu— [f)? dxdt (12)

was determined in parallel. The degrees of the stabilizer, (the variables p and q) were chosen from the condi-
tion of continuous differentiability of the original functions.
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TABLE 1. Comparison of the Methods of Least Squares and of

Regularization
1 2
@=0 26ty 2f!] af’}
N 5120140 ] 5| 20|40 ] 5 | 20]4 | 5 | 2 | 40
j‘ o} x 10+ | 85| 50 | 39 | 79 | 50 | 39 |12,9/0,58/0,22|12,9/0,58| 0,22
@ o210t | 21| 32 8,6 | 19 | 32 |8,6|38,9/1,68 1,00/36,6/1,68} 0,99
_ N 5121140 | 5|2 |40 5 | 21|40 | 5 |21 40
‘"5 o3 X 10¢ | 1091 35 | 27 | 128 | 33 | 27 {24,6|1,17]0,81|20,4]1,12{ 0,80
@ 02X 104 365 | 15 |6,19] 363 | 15,7 5,8 | 1,03{4,944,68|66,9{4,88| 4,69
o) o’ of?)
N 5 | 20 | 40 5 20 40 5 20 40
T,’ of x 104 | 13,2 | 5,92 | 25,9 13,1 | 0,44 | 0,20 | 594 | 4,84 | 21,3
@ 62 x 10t | 28,8 | 3,97 | 1,961 28,6 | 1,39 | 0,99 | 7,09 | 3,81 | 2,80
- N 5 1 21 | 40 5 21 40 5 21 40
S o X10% | 17,1 | 2,41 | 25,5 14 | 0,91 | 0,77 | 6,64 | 8,64 | 25,9
@ 03X 10* | 40,6 | 6,84 | 5,531 29 | 4,61 | 4,76 | 8.68 | 7,06 | 5,58

TABLE 2. Values of the Coefficient a(u) Found with £ = 01 and N =
40

|

0,05 ‘ 0,25 0.5 0,75

«=0 | a 10,997] 0,501| 0,498 | 0,488} 0,484 0,497 0,499
Q{2 ’ a |0,495] 0,499 0,499 0,488 | 0,485 0,497 0,5001

0,498 0,501 0,992
0,498 | 0,497, 0,588

As the results of numerical experiments show (Table 1), the use of stabilizers of nonzeroth degree con-
siderably improves the solution of the inverse problem. The stabilizer 951’% is close in its properties to the
method of least squares; i.e., in the spline approximation of the coefficient a(u) the zeroth regularization is
insufficient. As was assumed above, among the stabilizers of the two classes the best proves to be that which
includes the additional regularization of the initial data (k = 2). The results of the solution of the model prob-
lem (9)-(11) are improved in proportion to the increase in the degree of the stabilizer up to a value of p =q =1,
which determines the continuity of the derivative of the spline (5), and they also improve with an increase in
the parameter N of the spline lattice. Further, the degree of smoothness of the initial data &i(x, t) influences
the regularization. First, the smoothness determines the degree of the stabilizer, and second, from a com-

parison of stabilizers of the same degree (932} and 952)0) one can cnnclude that the regularization is sensitive
to the variable which represents less smoothess.

An important result of the use of stabilizers is the improvement of the properties of the solution as ¢ —~ 0
and with a large fixed N: In this case the method of least squares leads to an additional error in the solution

and, for example, of’2|e=0 > G%,zjg =¢.1 With N = 20and N = 40; i.e., the method of least squares does not assure
convergence of the solution ag € — 0.

The smallest values of the coefficient for the case of € = 0.1 and N = 40 are presented in Table 2, It is
seen from it that the error at the boundary of the region proves to be the largest. This should be expected,

since the spline (5) is not a coordinate function, but this error is also smoothed out in the case of regulariza-
tion,

In conclusion, we note that the problem of identification for several unknown coefficients requires addi-
tional study.



NOTATION

x is the spatial vector;

t is the time coordinate;

ufx, t) is the process under consideration;

tx, t) is its approximation;

f(x, t) is the source function;

i(x, t) is the measured value;

PU, IF are the metrics of the functional spaces;
a(u) is the unknown coefficient;

Wx), @1(t), @,(t) are the functions describing the initial and boundary conditions of the problem;

Ly, L(}?,L(;),Dl,DZ are the operators of initial ~boundary problem;

a is the regularization parameter;
bqlal is the regularizing functional;
a(k) is the stabilizer;
P
k is the class of stabilizer;
P, q are the degrees of stabilizer;
l is the spline index;
xfl), hz(l) are the spline coefficients;
N is the spline grid parameter;
u, is the solution of the direct problem with the given a,
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